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Abstract

The behavior of composite shells of revolution with large deflections (load—displacement diagrams and stress states)
is studied. The nonlinear boundary value problems for composite shells of revolution, which have been obtained in
Part 1 of the present study by means of the asymptotic approximation of Reissner’s equations, are analyzed. The
numerical solutions of these problems are obtained in several cases of a practical importance. The composite spherical
shells with different types of boundary conditions as well as the completed orthotropic ellipsoids of revolution under
uniform external pressure and concentrated load are considered in detail. The high accuracy and effectiveness of the
obtained asymptotic solutions are demonstrated by means of comparing the asymptotic results with numerical solutions
of the original Reissner’s equations. © 2001 Elsevier Science Ltd. All rights reserved.

Keywords: Composite shell of revolution; Large deformations; Asymptotic solutions; Spherical and ellipsoidal composite shells

1. Introduction

The major practical problem in the analysis of behavior of shells with large deflections is to describe the
load—displacement diagram of structures and to estimate their stress and strain equilibrium states. The
direct application of numerical methods is very difficult because of a significant nonlinearity and singularity
of the problems (Graff et al., 1985; Evkin and Korovaitsev, 1992; Korovaitsev and Evkin, 1992). Therefore,
for these purposes we are using the asymptotic boundary value problems, which have been obtained in
Part 1 of the present study (Evkin and Kalamkarov, 2001). These problems are significantly simpler
compared with the original Reissner’s equations (Reissner, 1969, 1972). Despite the attained simplicity, the
level of accuracy of asymptotic equations has remained similar to the original one in the asymptotic sense.

According to the asymptotic approach we distinguish two types of the shell behavior. The first one
corresponds to nonsmall values of load parameter, when the inner boundary layer is located close to the
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shell boundary and is interacted with it by reversing the structure. In this case, we will obtain in the present
paper the numerical solutions for composite spherical shallow caps with different types of boundary
conditions. This will allow us to illustrate the effectiveness of the approach, as well as to describe the
particularities of the structure equilibrium states. The second type of the shell behavior with large deflec-
tions corresponds to the asymptotically small values of load parameter, and it occurs when the inner
boundary layer is located far enough from the shell edge, or, for example, in the case of completed shells.
The last problem is much simpler compared with the first one, because of its independence from boundary
conditions. In this case, there is no need to solve a boundary value problem, and it is sufficient to apply the
asymptotic formulae obtained in Part 1 of this study in order to analyze the behavior of thin orthotropic
ellipsoids of revolution both under uniform external pressure and transversal force concentrated in the shell
pole. We also compare asymptotic solutions with numerical results for the original boundary value problem
in order to verify the accuracy of our asymptotic approach.

2. Axisymmetrical deformation of a thin composite spherical shell

In this section we analyze numerically the asymptotic boundary value problems which have been ob-
tained in Part 1 of this study (Evkin and Kalamkarov, 2001). We will consider the case when the inner
boundary layer is located close to the shell boundary with coordinate &, =~ &, (Fig. 1). Therefore the main
asymptotic equations (3.29) and (3.30) of Part 1 of the present study could be represented as follows:
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Fig. 1. Load parameter versus deflection amplitude of rigidly clamped composite cap.
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%—i—siné*ni—gzﬁsinw+c}vcosw (2.1)
dzj_ n dzl_cosw—cosf*
d&  siné, d&? sin’é,

(2.2)

where §,, U, n are parameters of load, horizontal stress resultant and eccentricity of shell respectively,
&= (Y, — &)/e, & is the angle defining location of the inner boundary layer (Fig. 1), i, is the angle co-
ordinate of the shell point.

Considering isotropic spherical shell under uniform external pressure and introducing change of vari-
ables

y=y-g, y=%& fo=Usin&, ¢,=2bsiny, % =q/q. (2.3)
we arrive to the limiting equations

sin(y — go)
sin y

g0 =—/o — 2Jgcos(y — go) siny (2.4)

5 Ccos(y — g) — oSy
fo= :
sin y

(2.5)

obtained earlier in Kriegsmann and Lange (1980). It is also shown in this paper that 1y = 0 for the com-
pleted sphere as well as in the case, when boundary layer region is located sufficiently far from the shell
edge. If the boundary layer region is located close to the shell edge (fully inverted shell), 4y ~ 1 or re-
spectively ¢, ~ 1 in Egs. (2.1) and (2.2).

We will consider classical boundary conditions, which in the first order of asymptotic approximation
according to Eqgs. (3.32)—(3.34) of Part 1 could be represented as follows:

/ n

lp = é*» U - Siné ‘V = 0 (26)
y=¢,  U=0 2.7)
W +nsing,U =0, T - sn:lg W =0 (2.8)

The first condition corresponds to the clamped edge of the shell, the second condition corresponds to an
edge resting on a frictionless surface, and the last one is the simply supported edge.

The considered boundary value problems are free of singularities and contain only two parameters: n
and ¢&,. Solving them by applying standard numerical methods, one can obtain equilibrium paths as well as
strain and stress states of shell with large deflections. The samples of such solutions for composite shallow
spherical caps under uniform external pressure are given below.

We simplify the boundary value problems by introducing approximations

sinx ~x, cosx~1—0.5x (2.9)

which correspond to the technical shell theory containing only quadratic nonlinear terms. After changing of
variables

T =20, W==&(l—2w) (2.10)
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we arrive at the equations

wy — ngg — @o(1 —2wp) + g0 =0 (2.11)

@y +nwy —wo(l —wy) =0 (2.12)
with one of the following boundary conditions (at & = &)

wo =0, ¢y +nwy, =0 (2.13)

wy =0, 0, =0 (2.14)

wy — ngy =0, o+ nwy =0 (2.15)
and

wo=1, @y=¢qo até— —o0 (2.16)

These boundary value problems for shallow composite shells contain only one structural parameter n,
which is equal to zero for any shells symmetrical about their midsurfaces, or for ones having eccentricity
only in the circumferential direction.

Formulae (3.37)—(3.39) of Part 1 for bending moments and main stress resultant take the form:

2DvWo 2DVWo oL

Ml: 8R3/2 (nq007W0)7 MZ: 8R3/2 (I’l woiDWO) (217)
2DY4(a, By ) /T,

y = ( R”) %o, (2.18)

where W is deflection amplitude.

The results of numerical solutions are represented in Figs. 1-4. We introduce the parameter C, =
(&, — &) /e, which characterizes the closeness of the inner boundary layer to the edge of the shell. In the case
of shallow spherical shell we have &, = (2H/R)"? and &, = (Wy/R)", and therefore
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Fig. 2. Load parameter versus deflection amplitude of simply supported composite cap.
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Fig. 3. Parameter of maximum circular membrane stresses of inverted spherical shells.
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Fig. 4. Parameter of maximum bending stresses of inverted spherical shells.

VA - T
C*_T (2-19)

The relations between load parameter gy and parameter C,, which characterizes deflection amplitude on
account of the shell inversion, are shown in Figs. 1 and 2. Parameter C, = 0, if the deflection amplitude of
shell reaches 2H, where H is the rise of the cap.
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The behavior of shell with different boundary conditions changes when C, tends to 0O (fully inverted
shell). The external pressure dramatically increases for the case of clamped shell while it changes from
positive to negative for the simply supported shell. The structure behavior changes slightly with variation of
eccentricity parameter n, including its sign. Load parameter ¢, = 0 for relatively large C, (C. = 4 for the
clamped shell and C, > 3 for the simply supported one), which corresponds to the location of boundary
layer sufficiently far from the edge of the shell. We will consider this case in the next section.

The plots of maximum values of functions max |¢,| and max |w,|, which correspond (according to
formulae (1.17) and (1.18)) to the maximum values of membrane and bending stresses respectively, are
shown in Figs. 3 and 4 for two types of boundary conditions (here n = 0). Comparison of Figs. 3 and 4 and
Figs. 1 and 2 shows that the membrane and bending stresses vanish as a simply supported sphere becomes
fully inverted (C. — 0, Wy — 2H, |qo| ~ 1). Oppositely, by inverting clamped shell the bending stresses
(max |wj|) sharply increase while the membrane ones change slightly (max |¢ ~ 0.2]). It should be noted
that considered functions describe only additional boundary layer stresses. The membrane and bending
stresses in the main inverted part of shell could be easily calculated.

3. Orthotropic ellipsoid of revolution with large deflections

In the case of completed shell or if the inner boundary layer is located far enough from the shell edge it is
not necessary to solve equations in order to obtain simple asymptotic formulae describing behavior of the
structure subject to a changing load, as well as to evaluate main stress components. It is sufficient to use the
asymptotic variational relationship (3.69) of Part 1 in the form

oW, 04,

0%  0&
where W] is the deformation energy of shell within the inner boundary layer region and it can be evaluated
using asymptotic formula (3.42) of Part 1

Wi = a,nBynRIE sin &g’ T /Ry, J =223 +0.116&; (3.2)

(3.1)

In order to illustrate the suggested approach we will consider two types of loading: uniform external
pressure and concentrated force. The variation of the work 4, of pressure ¢ can be represented as follows
04, -, dz(&)
—— = 2ngR%sin” ¢
ag, T ST gg
where z = z(y,) and ry = ro(,) are parametrical equations of midsurface of shell of revolution. For the
transversal force Q applied in the shell pole we have 4, = OW,,
04, dz(&o)
Wy =2 —z(0 d ——=2
h=20(&) ~=(0)] and 3 =207
where 1 is the deflection of the shell pole.
As an example we will consider the shell with a midsurface in a shape of an ellipsoid of revolution given
by equation

(3.3)

(3.4)

2 2
I V4
St o=l (3.5)

where b and c are the semi-axes of the ellipsoid. Let us assume that their ratio 2 = ¢/b < 1. Then the largest
radius of curvature of the shell R, = b// will be attained at r, = 0, i.e., on the minor axis of the ellipsoid,
which is its axis of rotation.
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We apply also the geometrical relations for the ellipsoid of revolution

Ry=Ry)*, R =Ry 7. = m 2=7 tar:olpo (3.6)
P ta? i 7 =2 & er fan ézo - 3.7
(1 + ““A%) VT +tan’ &
then according to Eq. (3.2) the expression for the deformation energy takes the form
W = a, By R>E; sin eyl T (&) (3.8)
where
& = (1/R.)(Dyi/a.Bx)"" (3.9)

Instead of Eq. (3.3) we obtain the following formula after a simple rearrangement in the case of uniform
external pressure g
04 .
L = 2ngR sin® &y (3.10)
9o
Varying the total potential energy over &£, according to Eq. (3.1) and assuming that parameter of eccen-
tricity n = 0 we finally arrive at the expression for the external pressure parameter
T(éOv j’)

g=e¢. 3.11
q=e— (3.11)
where § = q/q.
J(dtan &y + Eo(1 +79,))& + 2E tan & 4L
7. :4/Ri ,—a*Dllez and T(fo,i) _ ( 0 0( b4 )) 0 0 0.dg, (312)

2sin’ &, tan 50"/2/ ¢
Formulae (3.11) and (3.12) together with Eq. (3.7) give the necessary link between load and deflection
amplitude W,. The post-buckling equilibrium paths obtained from these formulae are shown in Fig. 5 for
different values of ratio /. If 2 = 1, which corresponds to the complete spherical shell, our solution coincides
with the obtained for the isotropic sphere (Graff et al., 1985). The both solutions are also in a good
agreement with known numerical studies, in which the full Reissner’s equations were used. More detailed
comparison of asymptotic results with numerical ones both in post-buckling behavior and stress states of
spherical shells is described in Evkin and Korovaitsev (1992), Korovaitsev and Evkin (1992) and Evkin
(1995).

We note that each curve in Fig. 5 has a minimum value of load parameter, which restricts the domain of
existence of equilibrium configuration. For this value, which is important in analysis of shell stability, we
obtain the following expression:

('?min = Tmi‘é(ﬂ) Sy (313)

Solid line in Fig. 6 represents a plot of the function g,,,/¢. This function could be slightly simplified when
parameter A is small. Numerical investigation of formula (3.12) shows that the function (3.12) reaches its
minimum at small &,, when A is small as well, therefore we can assume that éé < 1 for 1<0.5. Then ex-
pression (3.12) can be represented in the form
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Fig. 5. Load-displacement diagrams of orthotropic ellipsoids of revolution.
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Fig. 6. Minimum load parameter depending on ratio of the ellipsoid axes.

6+ 5x2)(1 2\5/4
T(-x*a}“) = ( + x*z))f /’L+ x*) J(), Xy = 60//1, J() == 223 (314)

Finding the minimum of Eq. (3.14) for the variable x, we obtain
Tin = 21.2/2  at x, =~ 0.55 (3.15)

Then the expression for the minimum pressure parameter takes the form
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2.
qmin :g‘g* (316)

or for isotropic ellipsoid, assuming Poisson’s ratio v = 0.3,

_ 1.46 | h
9min = T R_* (317)

It follows from last formula that g, increases with decreasing A. For example, for R,/h = 100 and
A =0.25 we have g,;, = 0.58, however g, decreases with decreasing thickness ratio of the shell. The
approximate formula (3.16) is plotted in Fig. 6 by dashed line.
For the case of concentrated load Q it is easy to obtain the relation
sin® & e
0 =147 (cos2 &+ —20) sin” &,T (&, 1) (3.18)
A
where O = (2/20)/(ne.(a.B»D;)"?). Formula (3.18) together with Eq. (3.7) gives the relations between
load parameter and the deflection amplitude . They are shown in Fig. 7 for different values of parameter
A. We can observe the different types of essentially nonlinear behavior of shells with large deflections. If
A =1 we have the case of completed orthotropic spherical shell. If the angle &, is not large we can assume
that sin &, ~ &,, and cos &, ~ 1 — éé /2. In this case we obtain a simple formula
_ 4
0 = 3Jo&o = 3Jo 70

which coincides with the results in Pogorelov (1967) and Ranjan and Steele (1977) derived by using geo-
metrical-energy method for large deflection of the isotropic spherical shell. In the last study the obtained
formula was also expanded to the small deflections.

It is easy to generalize the formula (3.18) for the case of combination of both concentrated force and
external uniform pressure. We have obtained the following relation
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Fig. 7. Parameter of concentrated load depending on deflection amplitude of orthotropic ellipsoids of revolution.
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) 3/2 87
0= ﬁyi/z(cosz &y + sm}ﬁ) sin? & [T(éo, J) - 8—"1 (3.19)

Corresponding results are shown in Figs. 8-10. In Fig. 8 the equilibrium paths of spherical shell under
changing concentrated force and constant pressure of different levels are represented. The curves 1-4
correspond to the following four values of the pressure parameter (g/¢,) = 0, 0.5, 0.8, 1.07 respectively. The
last value 1.07 coincides with the minimum pressure according to the formula (3.13). Such additional
pressure is sufficient to change significantly the behavior of the shell under concentrated load. The curves 1-
3 shown in Figs. 9 and 10, correspond to the values of the pressure parameter (g/e.) =0, 3.6, 4.65 for
orthotropic ellipsoid of revolution with geometrical parameter A = 0.5. The last value 4.65 coincides with
the minimum external pressure according to formula (3.13). Figs. 9 and 10 represent the same results, but in
Fig. 9 we are focused on the interval W, > 1.5¢ and in Fig. 10 we show behavior of the shell for ) <c. We
consider two domains of displacement #;, with different types of shell behavior. The first one (W, > 1.5¢) is
characterized by a slight influence of the additional external pressure (Fig. 9). In the second region (W, < ¢)
we observe the significant impact of additional pressure with maximum and minimum values on the curve 3
in Fig. 10.

It should be noted that the suggested approach and the obtained formulae are applicable only for large
deflections. Therefore we restricted ourselves by consideration of small additional external pressure avoiding
the consideration of a stability problem for spherical shell under external pressure. In order to solve the
stability problem we should expand the results to the area of small deflections. This direction has been
outlined in Evkin (1989), where also a practical estimation of validity domain (W, > 5h, where £ is the shell
thickness) of the suggested approach has been obtained in the case of isotropic shells.

Finally, we obtain the following expressions:

D D
max |M;| = yl/;—‘f‘) max |¢/|, max|M,| = D—i max | M| (3.20)
12 T
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Fig. 8. Behavior of spherical shell under combination of loads: external pressure and concentrated load.
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Fig. 9. Load—displacement diagram of orthotropic ellipsoid of revolution (4 = 0.5) under combined loading of external pressure and
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Fig. 10. Nonlinear behavior of ellipsoid of revolution (4 = 0.5) under combined load of external pressure and concentrated load.

max [N;| = a.By&oe, max |f]/7)/*

*

(3.21)

which could be useful for evaluation of extreme stress values. For example, Fig. 11 shows the change of the
stress state with the increase of deflection amplitude. Here curves 1 and 1’ correspond to the maximum
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Fig. 11. Maximum bending moment and stress resultant depending on deflection amplitude of ellipsoids of revolution.

bending moment, curves 2 and 2’ correspond to the maximum membrane stress resultant. The results are
represented for ellipsoid of revolution with parameter / = 0.25 (curves 1 and 2) and for spherical shell
(curves 1’ and 2') under uniform external pressure. In the last case we compare asymptotic solution with
numerical one (dashed lines), obtained in Evkin and Korovaitsev (1992) for the isotropic hemisphere with
rigidly clamped edge and with parameters R/h = 100, v = 0.3. There is a good agreement of results in the
considered range of deflection amplitude, except when W,/R ~ 2. The difference between two solutions
seems to be natural in this narrow region, because of the influence of boundary condition considered in the
numerical solution. It is different from conditions taken into account in the analytical solution, which
correspond to a completed sphere. It is worth to note that the formulae (3.20) and (3.21) as well as plots
shown in Fig. 11 do not depend on type of loading but they depend only on the value of the deflection
amplitude Wj.

4. Conclusions

The numerical solution of asymptotic boundary value problems, which have been derived in Part 1 of
this study (Evkin and Kalamkarov, 2001), demonstrates different types of behavior of shell with large
axially symmetric deflections. It is shown that the boundary conditions play a crucially important role in
the case of fully inverted shell, when inner boundary layer is close to the shell edge. For example, a strong
increase of external pressure has been obtained for the clamped shell, in contrast to the simply supported
shell when the pressure changed from positive to negative. It is interesting that the variation of value and
sign of structure eccentricity parameter n slightly impacts the behavior diagram with large deflections of
composite shells, except region with small values of external pressure.

The consideration of completed shells, for example orthotropic ellipsoids of revolution, allows us to
make the conclusion that the pressure parameter takes asymptotically small value for large deflections and
it can reach a minimum of a magnitude depending on variation of the geometrical and stiffness parameters
of the shell in meridian direction. This minimum can be used for estimation of lower limit of pressure for
the existence of post-buckling axially symmetric equilibrium configuration of the shell of revolution.



A.Yu. Evkin, A.L. Kalamkarov | International Journal of Solids and Structures 38 (2001) 8975-8987 8987

Finally, we are able to conclude that the asymptotic relations obtained in Part 1 of this study can be
successfully used in the analyses of both load-displacement diagrams for different types of shells of revo-
lution and their stress states.
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